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Abstract We describe enveloping algebras of finite-dimensional Lie algebras which are for-
mal in the sense that their Hochschild complex as a differential graded Lie algebra is quasi-
isomorphic to its Hochschild cohomology. For Abelian Lie algebras this is true thanks to
the Kontsevich formality theorem. We are using his formality map twisted by the group-like
element generated by the linear Poisson structure to simplify the problem, and then study
examples. For instance, the universal enveloping algebras of the Lie algebras gl(n,K) ⊕ K

n

are formal. We also recover our rigidity results for enveloping algebras from this new angle
and present some explicit deformations of linear Poisson structure in low dimensions.

1 Introduction

Since Maxim Kontsevich’s seminal paper [29] on deformation quantization on any Pois-
son manifold, his concept of formality of associative algebras turned out to be extremely
useful for the deformation theory of that algebra. An associative algebra is called formal
if its Hochschild complex equipped with the Gerstenhaber graded Lie structure is quasi-
isomorphic in the L∞ sense to its Hochschild cohomology. If this is the case first order
deformations having induced Gerstenhaber bracket equal to zero always integrate to formal
deformations.

Kontsevich’s basic example is the symmetric algebra of a vector space which is formal.
An interesting playground for formality checks seems to be the class of universal enveloping
algebras of Lie algebras which are very close to symmetric algebras. For these algebras it
is also interesting to study their rigidity as an associative algebra, i.e. the question whether
each formal associative deformation is equivalent to the zero deformation, see [2] for some
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results in that direction. We have called a Lie algebra strongly rigid if its enveloping algebra
is rigid.

In this report we should like start an investigation of formality and rigidity of universal
enveloping algebras of Lie algebras. We shall give a sufficient criterion for formality: if the
Chevalley–Eilenberg complex of a Lie algebra with values in the symmetric algebra of the
Lie algebra is formal, then the universal enveloping algebra itself is formal, see Theorem 6.2.
The proof uses a twisting of the Kontsevich formality map which converges for linear Pois-
son structures. The above-mentioned Theorem can also be used to reprove the Nonrigidity
Theorem of [2] by constructing nontrivial deformations of universal enveloping algebras by
means of nontrivial deformations of the linear Poisson structure. Finally we present some
explicit deformations of linear Poisson structures in low dimensions.

The paper is organized as follows: The Sect. 2 is dedicated to preliminaries on enveloping
algebras and deformation theory. Then we recall in Sect. 3 the notion of strongly rigid Lie
algebra which was introduced in [2] and show that they are contained in the class of rigid Lie
algebras and their second scalar cohomology group must be 0. In Sect. 4, we discuss the for-
mality maps for associative algebras. We recall the bialgebras structures and the Kontsevich
formality from where the existence of formal deformations of formal associative algebras
can be deduced. Also we twist the formality maps by grouplike elements in the associative
algebras case (Sect. 4.3). The formality in the particular case of symmetric algebra is sum-
marized in Sect. 5. Section 6 concerns the deformation and formality universal enveloping
algebras through the linear Poisson structure with respect to the finite-dimensional Lie alge-
bras. We show that the universal enveloping algebras of the Lie algebras of the affine groups
of K

n are formal, a fact which do not find in the literature. Also we recover the nonrigidity
theorem of universal enveloping algebra proved in [2], which states that the nontrivial de-
formation of the linear Poisson structure associated to the Lie algebra induces a nontrivial
deformation of the universal enveloping algebra. In the Sect. 6, we construct examples of
quadratic deformations of linear Poisson structure associated to n-dimensional Lie algebras
for n ≤ 7. Then we obtain a classification of n-dimensional strongly rigid solvable Lie al-
gebras for n ≤ 6. Therefore we have the following classification of n-dimensional strongly
rigid Lie algebras (n ≤ 6):

{0}; C; aff(1,C); sl(2,C); gl(2,C); aff(1,C) ⊕ sl(2,C);
sl(2,C) ⊕ sl(2,C); aff(2,C).

2 Preliminaries

2.1 Universal Enveloping Algebras

Let K be a commutative ring and g be a Lie algebra over K. Recall that a (left) g-
representation of g is a K-module M and a K-homomorphism

g ⊗M �→ M,

x ⊗ a �→ xa
(2.1)

such that x(ya) − y(xa) = [x, y]a. To each Lie algebra g, an associative K-algebra Ug is
associated such that every (left) g-representation may be viewed as (left) Ug-representation
and vice-versa. The algebra Ug is constructed as follows.
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Let T g be the tensor algebra of the K-module g, T g = T 0 ⊕ T 1 ⊕ · · · ⊕ T n ⊕ · · · where
T n = g ⊗ g ⊗ · · · ⊗ g (n times). In particular T 0 = K1 and T 1 = g. The multiplication in
T g is the tensor product. Every K-linear map g ⊗ M → M has a unique extension to a
T g-module map T g ⊗ M → M. If g ⊗ M → M is a g-module then the vector space g

inside T g is in general not a Lie subalgebra being represented on M. This is remedied if
and only if the elements of T g of the form x ⊗ y − y ⊗ x − [x, y] where x, y ∈ g are sent
to 0. Consequently, one is led to introduce the two-sided ideal I generated by the elements
x ⊗ y − y ⊗ x − [x, y] where x, y ∈ g. The enveloping algebra Ug of g is thus defined
as T g/I . It follows that g-representations and Ug-modules may be identified. Recall that
every Ug-bimodule M is a g-module by (x,m) → xm − mx, denoted by Ma .

Assume that g is a free Lie algebra. Let {xi} be a fixed basis of g and yi be the im-
age of xi by the map g → T g → Ug. We set yI = yi1 · · ·yip with I a finite sequence of
indices i1, . . . , ip and yI = 1 if I = ∅. The Poincaré–Birkhoff–Witt Theorem insures that
the enveloping algebra Ug is generated by the elements yI corresponding to the increasing
sequences I .

We denote by SV the symmetric algebra over a K-module V . If Q ∈ K, then there exists
a canonical bijection between Sg and Ug which is a g-module isomorphism between Sg

and Uga [12, pp. 78–79].
We shall need to compute Hochschild and Chevalley–Eilenberg cohomology of Ug and g,

respectively, wherefore we shall cite the following two Theorems:
The classical Theorem due to H. Cartan et S. Eilenberg, [9, pp. 277] gives a link between

the Hochschild cohomology of an enveloping algebra with values in an Ug-bimodule M
(in particular M = Ug) and the Chevalley–Eilenberg cohomology of the Lie algebra with
values in the same module.

Theorem 2.1 Let g be a finite dimensional Lie algebra over K. Then

Hn
H (Ug,M) 
 Hn

CE(g,Ma) ∀n ∈ N.

In particular, if Q ⊂ K

Hn
H (Ug,Ug) 
 Hn

CE(g,Uga) 
 Hn
CE(g,Sg) ∀n ∈ N.

The Hochschild–Serre Theorem [28] gives the following factorization of the Chevalley–
Eilenberg cohomology groups in the case of a decomposable solvable Lie algebra.

Theorem 2.2 Let g = n ⊕ t be a finite dimensional solvable Lie algebra over K, where n is
the largest nilpotent ideal of g and t the supplementary subalgebra of n, reductive in g, such
that the t-module induced on Uag is semisimple, then for all nonnegative integers p, we have

Hp
CE(g,Ua(g)) 


∑

i+j=p

Hi
CE(t,K) ⊗ Hj

CE(n,Uag)t

where Hj

CE(n,Uag)t denotes the subspace of t-invariant elements.

2.2 Deformations and Cohomology

The formal deformation of rings and algebras was introduced by Gerstenhaber in 1964 [20].
He gave a tool to deform algebraic structures based on formal power series. The interest
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on deformations has grown with the development of quantum groups related to quantum
mechanics [1]. Examples of quantum groups may be obtained as Hopf algebra deformations
of the enveloping algebra of a Lie algebra. A. Fialowski et al. take another point of view
for studying deformations: Instead of formal power series rings they consider more general
commutative algebra [14–19, 31].

Unless otherwise stated, K denotes a field of characteristic 0. Let K[[t]] be the power
series ring with coefficients in K. For a K-vector space E we denote by E[[t]] the K[[t]]-
module of the power series with coefficients in E. Let (A,μ0) be an associative (resp. Lie)
K-algebra, then (A[[t]],μ0) is an associative (resp. Lie) K[[t]]-algebra.

A formal deformation of an associative (resp. Lie algebra) A is an associative (resp. Lie)
K[[t]]-algebra (A[[t]],μ) such that

μ = μ0 + tμ1 + t2μ2 + · · · + tnμn + · · · ,
where μn ∈ HomK(A⊗K A,A) (resp. μn ∈ HomK(A∧K A,A)). Moreover, two deforma-
tions (A[[t]],μ) and (A[[t]],μ′) are said to be equivalent if there exists a formal isomor-
phism

ϕ = ϕ0 + ϕ1t + · · · + ϕnt
n + · · · ,

with ϕ0 = IdA (Identity map on A) and ϕn ∈ HomK(A,A) such that

μ′(a, b) = ϕ−1
t (μ(ϕ(a),ϕ(b))) ∀a, b ∈ A.

A deformation of A is called trivial if it is equivalent to (A[[t]],μ0). An associative (resp.
Lie) algebra A is said to be rigid if every deformation of A is trivial.

Recall the relation of formal deformation theory to Hochschild cohomology in the case
of an associative algebra and Chevalley–Eilenberg cohomology in the case of Lie algebra.
We denote by Hn

H (A,M) the n-th Hochschild cohomology group of an associative algebra
A with values in the bimodule M and by Hn

CE(g,M) the n-th Chevalley–Eilenberg coho-
mology group of a Lie algebra A with values in a g-module M. The second Hochschild co-
homology group of an associative algebra (resp. Chevalley–Eilenberg cohomology group of
a Lie algebra) with values in the algebra may be interpreted as the group of infinitesimal de-
formations. The rigidity Theorem of Gerstenhaber [20] (resp. of Nijenhuis–Richardson [32])
insures that if the 2nd Hochschild cohomology group H2

H (A,A) (resp. Chevalley–Eilenberg
H2

CE(g,g)) of an associative algebra A (resp. a Lie algebra g) vanishes then the algebra (resp.
Lie algebra) is rigid. Therefore the semisimple associative (resp. Lie) algebras are rigid be-
cause their second cohomology groups are trivial [22].

The third cohomology group corresponds to the obstructions to extend a deformation of
order n to a deformation of order n + 1 [20, 21, 32].

The rigidity of n-dimensional complex rigid Lie algebras was studied by Carles, Diakité,
Goze and Ancochea-Bermudez. Carles and Diakité established the classification for n ≤ 7
[6–8], and Ancochea with Goze did the classification for solvable Lie algebras for n = 8
and some classes [24]. The classification of associative rigid algebras are known up to n ≤ 6
(see [30]).

3 Strongly Rigid Lie Algebras and Properties

We recall here the notion of strongly rigid Lie algebra introduced in [2]:
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Definition 3.1 A Lie algebra g is called strongly rigid if its enveloping algebra Ug is rigid
as an associative algebra.

The semisimple Lie algebras give examples of strongly rigid Lie algebras. In fact, the
Whitehead lemmas induce that the first and second cohomology groups of a Lie algebra g

with values in every finite dimensional K-module vanish. Therefore these Lie algebras are
rigid as Lie algebra. Using the filtration of Sg and the Cartan–Eilenberg Theorem we obtain
H 2

H (Ug,Ug) = 0. Therefore, the enveloping algebra of a semisimple Lie algebra is rigid.
In the following, we show some properties and examples of strongly rigid Lie algebras.

3.1 Rigidity of the Lie Algebra

Theorem 3.1 If g is a finite dimensional strongly rigid Lie algebra over K, then g is rigid
as a Lie algebra.

Proof We suppose that the enveloping algebra Ug of g is rigid, but not the Lie algebra g.
Then there exists a nontrivial formal deformation (g[[t]],μ) of g with μ = ∑∞

n=0 μnt
n and

the cohomology class of μ1 is nontrivial in H2
CE(g,g). Since g is finite dimensional, then

the K[[t]]-module g[[t]] is isomorphic to the free module g ⊗K K[[t]]. Let yI := yi1 · · ·yik

be the generators of the PBW basis of Ug, let y ′
I := y ′

i1
• · · · • y ′

ik
be the generators of

PBW basis of U(g[[t]]) over K[[t]] and that • is the multiplication in U(g[[t]]). The map
Φ : Ug ⊗K K[[t]] → U(g[[t]]) defined by Φ(yI ) := y ′

I is a K[[t]]-module isomorphism.
Let μ̄ : Ug ⊗K K[[t]] × Ug ⊗K K[[t]] → Ug ⊗K K[[t]] the multiplication on the module
Ug ⊗K K[[t]] induced by • and Φ , i.e. μ̄(a, b) := Φ−1(Φ(a) • Φ(b)). The restriction of μ̄

to elements of Ug × Ug defined a K-bilinear map Ug × Ug → Ug ⊗K K[[t]] ⊂ (Ug)[[t]]
which we denote also by μ̄, i.e. μ̄(u, v) = ∑∞

n=0 tnμ̄n(u, v) for all u,v ∈ Ug where μ̄n ∈
HomK(Ug ⊗ Ug,Ug). The K-bilinear map μ̄ defined naturally a K[[t]]-bilinear associative
multiplication over the K[[t]]-module Ug[[t]] (which contains Ug ⊗K K[[t]] as a dense
submodule with respect to t -adic topology):

μ̄

( ∞∑

s

t sus,

∞∑

s′=0

t s
′
vs′

)
:=

∞∑

r=0

t r
∑

s,s′,s′′≥0
s+s′+s′′=r

μ̄s′′(us, vs′).

In particular, the map μ̄0 defined an associative multiplication over the vector space Ug, and
(Ug[[t]], μ̄) is a formal associative deformation of (Ug, μ̄0). For a finite increasing sequence
I, J we have μ̄0(yI , yJ ) = Φ−1(y ′

I • y ′
J )|t=0. By ordering the product y ′

I • y ′
J we obtain that

μ̄0 is the multiplication of Ug and (Ug[[t]], μ̄) is a formal deformation of Ug. It follows that
μ̄1 is a Hochschild 2-cocycle of Ug, and the restriction of μ̄1 to X,Y ∈ g satisfies

μ1(X,Y ) = μ̄1(X,Y ) − μ̄1(Y,X) ∀X,Y ∈ g (3.1)

because the Lie algebra (g[[t]],μ) is a Lie subalgebra of U(g[[t]]) which may be considered
as an associative subalgebra of (Ug[[t]], μ̄). The rigidity of Ug implies that there exists a
formal isomorphism ϕ = ∑∞

r=0 ϕr t
r , where ϕ0 = IdUg and ϕn ∈ HomK(Ug,Ug) such that

ϕt(μ̄(u, v)) = μ̄(ϕ(u),ϕ(v)) ∀u,v ∈ Ug,
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which is equivalent to

∞∑

r=0

t r
∑

a,b≥0
a+b=r

ϕa(μ̄b(u, v)) =
∞∑

r=0

t r
∑

a,b,c≥0
a+b+c=n

μ̄a(ϕb(u),ϕc(v)) ∀u,v ∈ Ug. (3.2)

If r = 1, the relation becomes

μ̄1(u, v) = (δH ϕ1)(u, v) ∀u,v ∈ Ug (3.3)

where δH is a Hochschild coboundary operator (see [27]) with respect to the multiplication
μ̄0 of the enveloping algebra.

Then the formulae (3.1) and (3.3) imply

μ1(X,Y ) = (δH ϕ1)(X,Y ) − (δH ϕ1)(Y,X)

= Xϕ1(Y ) − ϕ(XY) + ϕ(X)Y − Yϕ1(X) + ϕ(YX) − ϕ(Y )X

= (δCEϕ1)(X,Y ) ∀X,Y ∈ g (3.4)

where δCE is the Chevalley–Eilenberg coboundary operator, (see [9]).
Therefore the class of μ1 in H2

CE(g,g) is trivial. Contradiction. �

This result shows that the class of strongly rigid Lie algebras is contained in the class of
rigid Lie algebras.

3.2 Second Scalar Cohomology Group

In this section we give a necessary condition on the scalar Chevalley–Eilenberg cohomology
group for the strong rigidity of a Lie algebra.

Let ω ∈ Z2
CE(g,K) be a scalar 2-cocycle of the Lie algebra g. Let gω = g ⊕ Kc be a

central extension of g with ω such that the new bracket [ , ]′ is defined as usually by

[X + ac,Y + bc]′ := [X,Y ] + ω(X,Y )c ∀X,Y ∈ g; a, b ∈ K. (3.5)

Theorem 3.2 Let g be a finite dimensional Lie algebra over K such that the second scalar
cohomology group H2

CE(g,K) is different from 0, then g is not strongly rigid.

Proof Let ω ∈ Z2
CE(g,K) be a 2-cocycle with a nonzero class and let gtω[[t]] be the one-

dimensional central extension of the Lie algebra g[[t]] = g ⊗K K[[t]] over K = K[[t]]
(see (3.5)). The multiplication of the enveloping algebra U(gtω[[t]]) of gtω[[t]] is de-
noted by •. Let consider the two-sided ideal I := (1 − c′) • U(gtω[[t]]) = U(gtω[[t]]) •
(1 − c′) (where c′ denote the image of c in U(gtω[[t]])) and the quotient algebra Utωg :=
U(gtω[[t]])/I . Let e1, . . . , en be the K-basis of g. Then c, e1, . . . , en is a K[[t]]-basis of
gtω[[t]]. Let y1, . . . , yn be the images of the basis vectors in Ug and c′, y ′

1, . . . , y
′
n be the

images of the basis vectors in U(gtω[[t]]). Let yI := yi1 · · ·yik in Ug over K be the gen-
erators of the PBW basis. The elements c

′•i0 • y ′
I (where i0 ∈ N and c

′•i0 := 1) form a
basis of U(gtω[[t]]) over K[[t]] (the Lie algebra is a free module over a commutative
ring, see [9], p. 271). In the quotient algebra Utωg, the element c

′•i0 is identified to 1.
We denote the multiplication in Utωg by · and by the canonical projection, the images
of y ′

1, . . . , y
′
n by y ′′

1 , . . . , y ′′
n the elements y ′

I give y ′′
I := y ′′

i1
· . . . · y ′′

in
. It follows that the
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elements y ′′
I form a basis of the quotient algebra Utωg. As in the proof of the previous

Theorem 3.1, the map Φ : Ug ⊗K K[[t]] → Utωg given by yI �→ y ′′
I defines an isomor-

phism of free K[[t]]-modules. In a similar way we show that the multiplication induced on
Ug ⊗K K[[t]] by the multiplication · of Utωg and Φ define a sequence of μ = ∑∞

r=0 μrt
r ,

where μr ∈ HomK(Ug ⊗ Ug,Ug) with the following properties: 1. μ defines a formal as-
sociative deformation of (Ug,μ0), 2. μ0 is the usual multiplication of the enveloping al-
gebra Ug of g. Therefore, μ1 is a Hochschild 2-cocycle of Ug, and for all X,Y ∈ g ⊂ Ug

we have the relation: ω(X,Y )1 = μ1(X,Y ) − μ1(Y,X) because the Lie algebra gtω[[t]] is
injected in the quotient algebra Utωg, then in Ug ⊗K K[[t]] ⊂ Ug[[t]].

Suppose that Ug is rigid, then the deformation μ is trivial. Therefore there exists a
Hochschild 1-cocycle ϕ1 ∈ C1

H (Ug,Ug) such that μ1 = δH (ϕ1). It follows ∀X,Y ∈ g:

ω(X,Y )1 = μ1(X,Y ) − μ1(Y,X) = δH (ϕ1)(X,Y ) − δH (ϕ1)(Y,X)

= δCE(ϕ1)(X,Y ).

Then ω is a Chevalley–Eilenberg coboundary and its class is trivial in H2
CE(g,K), contradic-

tion. �

3.3 Examples

The previous Theorems allow us to show that some classes of solvable Lie algebras are not
strongly rigid.

Corollary 3.1 The following Lie algebras are not strongly rigid:

1. Every n-dimensional nilpotent Lie algebra g with n greater or equal than 2.
2. Every Lie algebra g = t⊕n where the dimension of the torus t is greater or equal than 2.

Proof The first assertion is a consequence of a classical result of Dixmier concerning the
nilpotent Lie algebras [11]: H2

CE(g,K) �= 0 if dim(g ≥ 2).
For the second, we have H2

CE(t,K) �= {0} for an Abelian Lie subalgebra implying that
H2

CE(g,K) �= {0} is nonzero by the Hochschild–Serre Theorem 2.2. �

In the following we show, by an elementary proof, that the 2-dimensional non Abelian
Lie algebra is strongly rigid. We denote by r2 the solvable Lie algebra generated by X,Y

such that [X,Y ] = Y .

Lemma 3.1

1. ∀n,m ∈ N : YXn = (X − 1)nY , [X,Y m] = mY m and ∀n ∈ N,∀m ∈ N
∗ (m − 1)XnY m =

[X,XnY m] − XnY m.
2. There exists a polynomial Pn+1(X) in X of degree n + 1 such that:

(a) P1(X) = X and Pn+1(X) = Xn+1 + ∑n+1
k=2(−1)k

(
n+2
k

)
Pn+2−k(X), if n ≥ 1.

(b) (n + 1)XnY = [Pn+1(X),Y ].

Proof The first assertion may easily be proved by induction.
Let us prove the property (2) by induction on n.
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It is true for n = 0, because [P1(X),Y ] = [X,Y ] = Y . Assume that it is true until n. We
have (a):

[Xn+2, Y ] = Xn+2Y − YXn+2

= Xn+2Y − (X − 1)n+2Y following (1)

= Xn+2Y −
n+2∑

k=0

(−1)k

(
n + 2

k

)
Xn+2−kY

= (n + 2)Xn+1Y −
n+2∑

k=2

(−1)k

(
n + 2

k

)
Xn+2−kY.

Applying the induction hypothesis on n + 2 − k with k ≥ 2, we obtain Xn+2−kY =
[Pn+3−k(X),Y ] (the degree of Pn+3−k(X) = n + 3 − k ≤ n + 1).

Then (b) becomes

(n + 2)Xn+1Y =
[
Xn+2 +

n+2∑

k=2

(−1)k

(
n + 2

k

)
Pn+3−k(X),Y

]
= [Pn+2(X),Y ].

�

Proposition 3.1 Let r2 be the 2-dimensional non Abelian Lie algebra. We have

H2
H (Ur2,Ur2) 
 H2

CE(r2,Ur2) = 0.

Thus, the Lie algebra r2 is strongly rigid.

Proof By the Cartan–Eilenberg Theorem we have

H2
H (Ur2,Ur2) 
 H2

CE(r2,Ur2).

We show that

∀Φ ∈ Z2
CE(r2,Ur2) ∃f ∈ C1

CE(r2,Ur2) s.t. δCE(f ) = Φ. (∗)

Let {XnY m : n,m ∈ N} be the Poincaré–Birkhoff–Witt basis of Ur2. Let Φ be an element
of Z2

CE(r2,Ur2). It is defined by Φ(X,Y ) =: u =: ∑
n,m∈N

un,mXnY m where un,m ∈ K are
nonzero for a finite number of n,m. Let f be an element of C1

CE(r2,Ur2). It is defined by
two elements f (X) =: v =: ∑n,m∈N

vn,mXnY m and f (Y ) = w = ∑
n,m∈N

wn,mXnY m where
vn,m,wn,m ∈ K are nonzero for a finite number of n,m.

Then

∀u =
∑

n,m∈N

un,mXnY m ∈ Ur2 ∃v,w ∈ Ur2 such that u = [X,w] − w + [v,Y ]. (∗∗)

We consider two cases:
Case 1: m �= 1.

We set wn,m = un,m

m−1 , then vn,m = 0 if m �= 1 and v,w satisfy (∗∗) by lemma (3.1,(2)).
Case 2: m = 1.

We set vn,m = 1
n+1un,1Pn+1(X) then wn,m = 0 if m = 1 and v,w satisfy (∗∗) by lemma

(3.1,(1)).
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We conclude that the relation (∗∗) is satisfied. Therefore H2
CE(r2,Ur2) = 0, and the Lie

algebra r2 is strongly rigid. �

In general for the affine Lie algebras aff(m,K) := gl(m,K) ⊕ K
m (semidirect sum) for

m ∈ N \ {0} we have

Proposition 3.2 We have

∀k ∈ N : Hk
CE(aff(m,K),Saff(m,K)) ∼= Hk

CE(gl(m,K),K)

whence in particular H2
CE(aff(m,K),Saff(m,K)) vanishes and the affine Lie algebras are

strongly rigid.

See [2] for the proof.

4 Formality Maps for Associative Algebras

In this section we shall summarize some results on formality, see also [4, 26, 29].

4.1 Graded Bialgebras

Let K be a field of characteristic 0. Recall that a Z-graded vector space V is a direct sum
⊕i∈ZV i of subspaces Vi . An element x of V lying in one of the Vi is called homogeneous,
and we shall denote by i =: |x| ∈ Z its degree. Given two graded vector spaces V and W ,
a linear map φ : V → W is said to be homogeneous of degree j if and only if for all integers i

we have φ(V i) ⊂ Wi+j . In graded situations we shall write Hom(V ,W)j for the vector
space of all linear maps which are homogeneous of degree j , and Hom(V ,W) for the direct
sum of all the Hom(V ,W)j . Clearly, Hom(V ,W) is a graded vector space. Likewise, the
tensor product V ⊗ W is graded by setting (V ⊗ W)i = ⊕a∈ZV a ⊗ Wi−a . Recall the Koszul
rule of signs: let φ : V → W and ψ : V ′ → W ′ two homogeneous linear maps. Then for all
homogeneous elements x ∈ V and y ∈ V ′

(φ ⊗ ψ)(x ⊗ y) := (−1)|ψ ||x|φ(x) ⊗ ψ(y)

which defines the graded tensor product of linear maps. Recall that a graded (associative)
algebra (A,μ) is a graded vector space A together with a linear map μ : A ⊗ A → A of
degree 0. Very often we write aa′ for μ(a ⊗ a′). For another graded algebra (B, ν) their
graded tensor product is defined for homogeneous elements a, a′ ∈ A and b, b′ ∈ B by

(a ⊗ b)(a′ ⊗ b′) := (−1)|b||a′ |aa′ ⊗ bb′.

For an integer j denote by V [j ] the shifted graded vector space defined by V [j ]i := V i+j .
The identity map V → V induces a map of degree −j : V → V [j ]. It is called suspension
map s for the case s : V → V [−1] whence it is of degree one. The map V → V [j ] is
considered as the −j th power of s. Multilinear maps φ : V ⊗k → W can be shifted, i.e.
φ[j ] : V [j ]⊗k → W [j ] by setting φ[j ] := s−j ◦ φ ◦ (s⊗k)j . The degree of φ[j ] is given by
|φ[j ]| = j (k − 1) + |φ|.
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Recall the graded symmetric bialgebra SV of a Z-graded vector space V : In the free
algebra T V over V (which inherits its Z-grading by the Z-grading of V ) divide out the two-
sided ideal generated by all elements xy − (−1)|x||y|yx in T V with homogeneous x, y ∈ V .
The resulting multiplication • is graded commutative, i.e. for two homogeneous elements
a, b ∈ SV we have a • b = (−1)|a||b|b • a. Note also that on T V there is the graded shuf-
fle comultiplication Δ : T V → T V ⊗ T V defined on generators by Δ(x) = x ⊗ 1 + 1 ⊗ x

which is graded cocommutative. Δ passes to the quotient, and equips SV with the structure
of a bialgebra. The graded symmetric algebra SV is a graded free algebra in the sense that
any linear map of degree 0 of V into another graded commutative algebra A can uniquely
be extended to an algebra map SV → A, and conversely any such algebra map is uniquely
determined by its restriction to V . Likewise, any homogeneous linear map d : V → SV

can uniquely be extended to a graded derivation of SV and conversely, any such deriva-
tion is uniquely determined by its restriction to V . The comultiplication, however, is more
important for formality. It turns out that SV is a graded commutative cofree coalgebra in
the following sense: Consider the category CAN of all such graded commutative coalge-
bras C that have exactly one grouplike element 1 and whose quotient coalgebra C/K1 is
conilpotent in the sense that for each element there is an integer n such that the n-fold it-
erated comultiplication vanishes on it. For any such coalgebra C denote by C+ the kernel
of the counit map ε, so clearly C = K1 ⊕ C+. Then for each homogeneous linear map φ

of degree zero of C+ into V there is a unique map of graded coalgebras Φ : C → SV such
that prV ◦Φ = φ where prV : SV → V is the canonical projection. Φ can be computed to be
Φ = e∗φ where ∗ is the convolution product in the space Hom(C,SV ). Conversely, any such
coalgebra map Φ is uniquely determined by its component prV ◦Φ . Likewise, for any homo-
geneous linear map d : SV → V there is a unique graded coderivation D : SV → SV such
that d = prV ◦ D which can be computed to be D = d ∗ id using convolutions. Conversely,
any graded coderivation D of SV is determined by its component prV ◦ D.

4.2 Kontsevich Formality

Let (A,μ0) be an associative algebra over the field K. For each positive integer n let An :=
Cn

H (A,A) = Hom(A⊗n,A) and A0 := A the space of Hochschild cochains of degree n. Set
A := ⊕∞

k=0A
k which is thus a Z-graded vector space upon defining Ak := {0} for strictly neg-

ative integers k. Recall that the Gerstenhaber multiplication ◦G : Ck
H (A,A)× Cl

H (A,A) →
Ck+l−1

H (A,A) is defined by

(f ◦G g)(a1, . . . , ak+l−1)

=
k∑

i=1

(−1)(i−1)(l−1)f (a1, . . . , ai−1, g(ai, . . . , ai+l−1), ai+l , . . . , ak+l−1), (4.1)

and the Gerstenhaber bracket is given by [f,g]G := f ◦G g−(−1)(k−1)(l−1)g◦G f . It follows
that the shifted space (A[1], [ , ]G) is a graded Lie algebra. Note that μ is associative if and
only if [μ,μ]G = 0. In that case the square of b := [μ, ]G vanishes and defines up to a
global sign the Hochschild coboundary operator δH .

For each nonnegative integer k denote by ak the kth Hochschild cohomology group

a
k := Hk

H (A,A) := Ker(b : Ak → Ak+1)

Im(b : Ak−1 → Ak)
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where again we set ak := {0} for all strictly negative integers k. The graded Jacobi identity
implies that the Gerstenhaber bracket descends to a graded Lie-bracket [ , ]s on the shifted
cohomology space a[1].

We shall call a generalized HKR-map any graded linear injection φ of degree 0 of the
Hochschild cohomology a into the subspace of cocycles of A, i.e. b ◦ φ = 0. By elementary
linear algebra this is always possible. However, in general φ will not be a morphism of
graded Lie algebras (a[1], [ , ]s) → (A[1], [ , ]G): by construction one only has for two
classes f,g ∈ a

φ[f,g]s = [φ(f ),φ(g)]G + b(Φ2(f, g))

so φ is a Lie algebra morphism up to a coboundary b(Φ2(f, g)). One may hope that this
process can be continued for higher order terms. In a more algebraic manner: consider the
shifted spaces a[2] and A[2]. Consider the shifted maps b[1] = b and [ , ]G[1] on A[2]
and [ , ]s[1] on a[2]. Thanks to the shift it follows that both [ , ]G[1] and [ , ]s[1] are graded
symmetric maps, i.e. [ , ]G[1] is a degree 1 map from S2(A[2]) → A[2] and [ , ]s[1] is a
degree 1 map from S2(a[2]) → a[2]. Let d : S(a[2]) → S(a[2]) be the unique coderivation
of S(a[2]) induced by [ , ]s[1], and let b+D be the unique coderivation of S(A[2]) induced
by b + [ , ]G[1]. Thanks to the graded Jacobi identity of both graded Lie brackets and the
structure of b as a graded commutator it follows that d2 = 0 and (b + D)2 = 0.

Definition 4.1 The associative algebra (A,μ0) is called formal if and only if there is a
morphism of differential graded coalgebras (of degree 0) Φ : S(a[2]) → S(A[2]), i.e.

(Φ ⊗ Φ) ◦ ΔS(a[2]) = ΔS(A[2]) ◦ Φ and (b + D) ◦ Φ = Φ ◦ d, (4.2)

such that the restriction of Φ to a[2] is a HKR map. Φ is called a formality map or an
L∞-morphism.

The above discussion has shown that Φ is determined by its components Φk : Sk(a[2]) →
A[2], which remedy order-by-order the above mentioned failure of the HKR-map Φ1 to be
a morphism of graded Lie algebras (L∞-algebra).

The formal deformation theory of a formal associative algebra (A,μ0) is very simple as
Kontsevich has shown: let π ∈ H2

H (A,A)[[h]] = a2[[h]] = a[2]0[[h]]. Suppose that

[π,π]s = 0. (4.3)

Then it is always possible to construct a formal associative deformation μ = μ0 +μ∗ where
μ∗ := ∑∞

r=1 hrμr such that the cohomology class [μ1] of μ1 is equal to π :
Consider S(a[2])[[h]] and S(A[2])[[h]] as topological bialgebras (with respect to the

h-adic topology) with the canonical extension of all the structure maps. Note that the tensor
product is no longer algebraic, but given by (S(a[2]) ⊗ S(a[2]))[[h]]. Let • denote the
shuffle-multiplication in a graded symmetric algebra. For a general graded vector space V it
can be easily seen that the group-like elements of S(V )[[h]] are no longer exclusively given
by 1, but by exponential functions of any primitive elements of degree zero, i.e. they take the
form e•hv with v ∈ V 0[[h]]. The image of the grouplike element e•hπ in S(a[2])[[h]] under
the formality map Φ , Φ(e•hπ ) is a grouplike element in S(A[2])[[h]] and thus takes the form
e•μ∗ with μ∗ ∈ hA2[[h]]. Since [π,π ]s = 0 it follows that d(e•hπ ) = 0, and therefore (b +
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D)(e•hμ∗) = 0. Projecting this last equation to A[2]0[[h]] = A2[[h]], we get the Maurer–
Cartan equation

0 = bμ∗ + 1

2
[μ∗,μ∗]G = 1

2
[μ0 + μ∗,μ0 + μ∗]G,

showing the associativity of μ = μ+μ∗. Hence μ := μ0 +μ∗ is a formal associative defor-
mation of the algebra (A,μ0).

4.3 Twisted Formality Maps for Associative Algebras

In this section we show that formality maps can be twisted by grouplike elements, compare
also [23].

Lemma 4.1 Let (C, μ̃,1,Δ, ε, S) and (C ′, μ̃′,1′,Δ′, ε ′, S ′) be graded topological Hopf
algebras. Let u ∈ C be a group-like element and p ∈ C be a primitive element of degree |p|.
1. If Φ : C → C ′ is a morphism of topological graded coalgebras then Φ̂ : C → C ′ : x �→

Φ(u)−1Φ(ux) =: Φ̂(x) is again a morphism of topological graded coalgebras.
2. If D : C → C is a graded coderivation, then D̂ : C → C defined by D̂(x) := u−1D(ux)

is also a graded coderivation of the same degree. In case D2 = 0 then D̂2 = 0.
3. Moreover, for a graded coderivation D of degree |D| the map D̃(x) := p(D(x)) −

(−1)|p| |D|D(px) is a coderivation of C of degree |D| + |p|.

Proof We shall denote by La left multiplication by a in C or C ′. For any morphism φ of
associative graded topological algebras we clearly have φ ◦ La = Lφ(a) ◦ φ. Now, u clearly
is of degree 0 and Φ(u) is also grouplike and invertible by the existence of an antipode.

1. We have Φ̂ = LΦ(u)−1 ◦ Φ ◦ Lu, and we get

Δ′ ◦ Φ̂ = Δ′ ◦ LΦ(u)−1 ◦ Φ ◦ Lu = L(Δ′(Φ(u)))−1 ◦ (Φ ⊗ Φ) ◦ LΔ(u) ◦ Δ

= (LΦ(u)−1 ⊗ LΦ(u)−1) ◦ (Φ ⊗ Φ) ◦ (Lu ⊗ Lu) ◦ Δ

= ((LΦ(u)−1 ◦ Φ ◦ Lu) ⊗ (LΦ(u)−1 ◦ Φ ◦ Lu)) ◦ Δ

and for x ∈ C:

ε ′(Φ̂(x)) = ε ′(Φ(u)−1Φ(ux)) = ε ′(Φ(u))−1ε ′(Φ(ux))

= ε(u)−1ε(ux) = ε(u)−1ε(u)ε(x) = ε(x)

whence Φ̂ is a morphism of topological graded coalgebras.
2. We compute

Δ ◦ D̂ = Δ ◦ Lu−1 ◦ D ◦ Lu = LΔ(u)−1 ◦ Δ ◦ D ◦ Lu

= (Lu−1 ⊗ Lu−1) ◦ (D ⊗ 1 + 1 ⊗ D) ◦ (Lu ⊗ Lu) ◦ D

= (D̂ ⊗ 1 + 1 ⊗ D̂) ◦ Δ,

and D̂ is a graded coderivation of the same degree. Since D̂2 = Lu−1 ◦ D2 ◦ Lu it follows
that D̂2 vanishes if D2 vanishes.
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3. We compute

Δ ◦ D̃ = Δ ◦ Lp ◦ D − (−1)|p| |D|Δ ◦ D ◦ Lp

= (Lp ⊗ 1 + 1 ⊗ Lp) ◦ (D ⊗ 1 + 1 ⊗ D) ◦ Δ

− (−1)|p| |D|(D ⊗ 1 + 1 ⊗ D) ◦ (Lp ⊗ 1 + 1 ⊗ Lp) ◦ Δ

= ((D ◦ Lp − (−1)|p| |D|Lp) ⊗ 1 + 1 ⊗ (D ◦ Lp − (−1)|p| |D|Lp)) ◦ Δ

= (D̃ ⊗ 1 + 1 ⊗ D̃) ◦ Δ. �

We apply this lemma to the situation C = S(a[2])[[h]], C ′ = S(A[2])[[h]], and Φ the
formality map for a formal associative algebra (A,μ0). Let π ∈ a[2]0[[h]] = a2 a cohomol-
ogy class such that [π,π]s = 0, and let μ∗ ∈ hA2[[h]] such that Φ(e•hπ ) = e•μ∗ , whence
μ = μ0 + μ∗ is a formal associative deformation of μ0 such that the class of μ1 is given
by π . Set

d ′ := e−hLπ ◦ d ◦ ehLπ , (4.4)

(b + D)′ := e−Lμ∗ ◦ (b + D) ◦ eLμ∗ , (4.5)

Φ ′ := e−Lμ∗ ◦ Φ ◦ ehLπ (4.6)

the above Lemma 4.1 implies that d ′ is a graded coderivation of the topological coalgebra
S(a[2])[[h]] of square zero, that (b +D)′ is a graded coderivation of the topological coalge-
bra S(A[2])[[h]] of square zero, and that Φ ′ is a morphism of graded topological coalgebras
intertwining the codifferentials, i.e.

Φ ′ ◦ d ′ = (b + D)′ ◦ Φ ′. (4.7)

Lemma 4.2 There are the following expressions for the twisted coderivations

1. d ′ = d + h[π, ]S
2. (b + D)′ = b + [μ∗, ]G + D =: b + D

where b is the Hochschild coboundary operator for the deformed multiplication μ.

Proof 1. Writing ad(ψ)
(
χ

)
for ψ ◦ χ − χ ◦ ψ where ψ is linear map of degree 0 we have

d ′ = e−h ad(Lπ )(d) = d +
∞∑

r=1

(−h)r

r! ad(Lπ)r (d).

By the above Lemma each of the terms in the exponential series is a graded coderivation of
the cofree coalgebra S(a[2]) of degree 1. It is therefore sufficient to check the projections to
a[2] of the above identities: let ξ1, . . . , ξk ∈ g:

pra[2](π • d(ξ1 • · · · • ξk) − d(π • ξ1 • · · · • ξk))

=
{

0 if k = 0 or k ≥ 2,

0 − [π, ξ1]s if k = 1.
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We denote by ads(π) the coderivation induced by ξ �→ [π, ξ ]s which is also a derivation of
the algebra Sa[2] at the same time. Furthermore

ad(Lπ)2(d) = −Lπ ◦ ads(π) + ads(π) ◦ Lπ = L[π,π ]s = 0

whence the higher order terms of the exponential series vanish.
2. Since b is also a graded derivation of the graded commutative algebra S(A[2]), we

get −Lμ∗ ◦ b + b ◦ Lμ∗ = Lbμ∗ , and since S(A[2]) is graded commutative the higher order
terms of the series vanish, and one gets

b′ = e−ad(Lμ∗ )(b) = b + Lbμ∗ .

Moreover, by an analogous reasoning as above we get

D′ = e−ad(Lμ∗ )(D) = D + adG(μ∗) + 1

2
L[μ∗,μ∗]G

where we denoted by adG(μ∗) the coderivation of S(A[2]) induced by ξ �→ [μ∗, ξ ]G which
also is a derivation of the algebra S(A[2]). Hence

(b + D)′ = b′ + D′ = b + adG(μ∗) + D + Lbμ∗ + 1

2
L[μ∗,μ∗]G = adG(μ) + D + 0 = b + D

thanks to the Maurer–Cartan equation for μ∗. �

5 Deformation Quantization of Polynomial Algebras

In this section we recall the important particular case where (A,μ0) is the symmetric al-
gebra SE where E is a finite dimensional real or complex vector space which is ungraded
(Z-graded of degree 0). A particular case of the Hochschild–Kostant–Rosenberg Theorem,
which is in fact is the particular case of an Abelian Lie algebra in the Cartan–Eilenberg
Theorem 2.1, shows that for each nonnegative integer k there is

a
k = Hk

H (A,A) ∼= SE ⊗ ΛkE∗ =: T k
poly

where the latter space is also called the space of algebraic polyvector fields of rank k. We
set Tpoly := ⊕∞

k=0T k
poly. For the computations, we shall use the canonical identification of SE

with the algebra of all polynomial functions on the dual space V := E∗. Let e1, . . . , en be a
basis of V , and let e1, . . . , en be the dual basis. we can regard any f ∈ SE as a polynomial
in the coordinates x1, . . . , xn (upon writing each x ∈ V as x = ∑n

i=1 xiei ). The polyvector
fields are now polynomial functions with values in ΛV . Using partial derivatives ∂/∂xi in
SE and interior products ιei with respect to the dual basis in ΛV , we can write the projected
Gerstenhaber bracket [ , ]s in its classical form an algebraic Schouten bracket

[ξ, η]s :=
n∑

i=1

ιei ξ ∧ ∂η

∂xi
− (−1)(|ξ |−1)(|η|−1)

n∑

i=1

ιei η ∧ ∂ξ

∂xi
. (5.1)

As the Gerstenhaber bracket, the Schouten bracket defines a graded Lie bracket on Tpoly[1],
i.e. for homogeneous elements ξ, η, ζ ∈ Tpoly one has

[ξ, η]s = −(−1)(|ξ |−1)(|η|−1)[η, ξ ]s , (5.2)

0 = (−1)(|ξ |−1)(|ζ |−1)[ξ, [η, ζ ]s]s + (−1)(|η|−1)(|ξ |−1)[η, [ζ, ξ ]s]s
+ (−1)(|ζ |−1)(|η|−1)[ζ, [ξ, η]s]s . (5.3)
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On the other hand there is the pointwise exterior multiplication ∧ which makes Tpoly =
S(V ⊕ V [−1]) a graded commutative algebra. The Schouten bracket and the exterior mul-
tiplication are compatible by the graded Leibniz rule

[ξ, η ∧ ζ ]s = [ξ, η]s ∧ ζ + (−1)(|ξ |−1)|η|η ∧ [ξ, ζ ]s . (5.4)

Note the following particular cases for the Schouten bracket where T 1
poly is the subspace of

all vector fields (i.e. derivations of SE = T 0
poly) where [ , ] denotes the usual Lie bracket (i.e.

commutator) of derivations:

[f,g]s = 0 for all f,g ∈ SV,

[X,f ]s = X(f ) =
n∑

i=1

Xi ∂f

∂xi
for all X ∈ T 1

poly, f ∈ SV,

[X,Y ]s = [X,Y ] =
n∑

i=1

(
Xi ∂Y

∂xi
− Y i ∂X

∂xi

)
for all X,Y ∈ T 1

poly.

5.1 (Linear) Poisson Structures

Let π = (1/2)
∑

i,j π ij ei ∧ ej ∈ T 2
poly a so-called bivector field. If in addition π satisfies

[π,π ]s = 0,

or in coordinates
n∑

h=1

(
πih ∂πjk

∂xh
+ πjh ∂πki

∂xh
+ πkh ∂πij

∂xh

)
= 0

it is called a Poisson structure. Then the bilinear map { , }π : SV × SV → SV defined by

{f,g}π =: −[[π,f ]s , g]s =
n∑

i,j=1

πij ∂f

∂xi

∂g

∂xj

equips the associative commutative algebra A := SV with an Poisson bracket, i.e. there are
the Jacobi and the Leibniz identities for all f,g,h ∈ A

{f, {g,h}π }π + {g, {h,f }π }π + {h, {f,g}π }π = 0,

{h,fg}π = {h,f }πg + f {h,g}π .

In general, a commutative associative algebra satisfying the preceding identities is called
a Poisson algebra. Poisson structures are very important in deformation theory and many
other contexts as integrable systems or representation theory [33].

Note that the operator δπ := [π,−]s defines a complex on the space of all polyvector
fields whose cohomology is the so-called Poisson cohomology.

Let (E = g, [ , ]) be a finite dimensional Lie algebra over K and V = g∗ its algebraic
dual. The Lie algebra structure [ , ] of g can canonically be considered as an element
π0 ∈ S1g ⊗ Λ2g∗ = T 2

poly and is a Poisson structure thanks to the Jacobi identity for the
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Lie bracket [ , ]. In terms of the structure constants C
jk

i := 〈[ej , ek], ei〉 of g the bivector
field π0 takes the form

π0(x) = 1

2

∑

i,j,k

C
jk

i xiej ∧ ek. (5.5)

It is easily computed that the complex (Tpoly, δπ0) is identical to the Chevalley–Eilenberg
complex of (CCE(g,Sg), δCE), hence the Poisson cohomology is given by the Lie algebra
cohomology.

5.2 Formality Maps for Polynomial Algebras and Deformation Quantization

From now we assume that the field K is either R or C. In his celebrated work [29] Kontsevich
gave an explicit formula for a formality map Φ : S(a[2]) → S(A[2]). Since it is a morphism
of graded symmetric coalgebras it is enough to specify its A[2]-component, that is the family
of degree zero linear maps Φn : Sn(a[2]) → A[2] for each positive integer n (which is called
Un in [29]). Take n polyvector fields ξ1, . . . , ξn ∈ a. Let Nder be the sum of all the ranks of
the ξi , i.e. Nder := |ξ1| + · · · + |ξn|. Since ξ1 • · · · • ξn is of degree Nder − 2n in Sn(a[2])
it follows that Φn(ξ1 • · · · • ξn) lies in A[2]Nder−2n = ANder−2n+2 which is the space of all
Hochschild cochains having m := Nder − 2n + 2 arguments in SE. Kontsevich encodes the
information in planar graphs having n vertices of the first kind, m vertices of the second kind
and Nder = m+2n−2 edges, see page 25 of [29]. The Hochschild n-cochain Φn(ξ1 •· · ·•ξn)

is a finite real linear combinations over expressions of the following kind:
First, write each polyvector field ξ of rank k = |ξ | in a basis as

ξ = (1/k!)
dimE∑

i1,...,ik=1

ξ i1···ik ei1 ∧ · · · ∧ eik

with components ξ i1···ik ∈ SE. Then define the n integers k1, . . . , kn by

ki = |ξ1| + · · · + |ξi |,
choose n + m − 1 integers r1, . . . , rn+m−1 such that

0 ≤ r1 ≤ r2 ≤ · · · ≤ rn+m−1 ≤ Nder,

and a permutation σ of {1, . . . ,Nder}. Calling this choice Γ , Kontsevich defines for all
f1, . . . , fm ∈ SE

ΦΓ (ξ1 • · · · • ξn)(f1, . . . , fm)

=
dimE∑

i1,...,iNder =1

∂r1ξ
i1···ik1
1

∂xiσ(1) · · ·xiσ(r1)
· · · ∂rn−rn−1ξ

ikn−1+1···ikn
n

∂x
iσ(rn−1+1) · · ·xiσ(rn)

× ∂rn+1−rnf1

∂xiσ(rn+1) · · ·xiσ(rn+1)
· · · ∂Nder−rn+m−1fm

∂x
iσ(rn+m−1+1) · · ·xiσ(Nder)

, (5.6)

and Φn is a real linear combination over all possible choices Γ which are encoded by the
Kontsevich graphs:

Φn =
∑

Γ

wΓ ΦΓ .
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where the real numbers wΓ are the Kontsevich weights given by integrals over configuration
spaces. Roughly speaking: one distributes Nder partial derivatives over the n + m symbols
consisting of the n polyvector fields and the m polynomials and summing the Nder upper
and lower indices in some chosen fashion.

In particular, for n = 1 we get m = |ξ | = Nder, and Φ1 is shown to be the usual HKR-map.
Moreover, for a Poisson structure π ∈ a2 the formal associative deformation μ of the

commutative multiplication μ0 of SE by μ∗ is given by

μ = μ0 +
∞∑

r=1

hr

r! Φr(π
•r ). (5.7)

Note that for each r the number of derivatives Nder is equal to 2r and m, the number of
functions is equal to 2. In the theory of deformation quantization, the formal deformation μ

defined by π is called a star-product, see [1, 3, 5, 10, 25]. In that theory, which gives a sort
of asymptotic formulation of a quantum mechanical observable algebra, the commutative
associative algebra is taken to be the ring of all smooth K-valued functions on a smooth
(Poisson) manifold. Kontsevich’s techniques allow to prove that these deformations exist
for any Poisson structure.

6 Deformation and Formality of Universal Enveloping Algebras

In this section we shall consider a linear Poisson structure π0 defined by the bracket of a
finite-dimensional Lie algebra g = E.

6.1 Convergence of the Twisted Kontsevich Formality Map on UEAs

Theorem 6.1 Let π0 be a linear Poisson structure with respect to the finite-dimensional Lie
algebra (g, [ , ]), and let Φ be Kontsevich’s formality map.

1. Then the twisted formality map Φ ′ = e−Lμ∗ ◦ Φ ◦ ehLπ0 of Lemma 4.1 takes the following
form for n ≥ 1, ξ1, . . . , ξn ∈ a and f1, . . . , fm ∈ Sg where m = |ξ1| + · · · + |ξn| − 2n + 2:

Φ ′
n(ξ1 • · · · • ξn)(f1, . . . , fm) =

∞∑

r=0

hr

r! Φn+r (π
•r
0 • ξ1 • · · · • ξn)(f1, . . . , fm). (6.1)

2. For each choice of ξ1, . . . , ξn and f1, . . . , fm the above equation (6.1) is only a finite sum,
hence converges for h = 1.

3. Denoting by the same symbol Φ ′ the twisted formality map at h = 1 we have that Φ ′
defines an L∞-morphism, i.e. a morphism of graded commutative differential coalgebras
of the coalgebra over the Chevalley–Eilenberg complex (S(a[2]), δCE + d) of the Lie
algebra g to the coalgebra over the Hochschild complex (S(A[2]),b+D) of the universal
enveloping algebra Ug of g.

Proof 1. Upon projecting on A[2] we get rid of the exponential of μ∗ for n ≥ 1 and imme-
diately get the announced formula.

2. Let d1, . . . , dn+m be the polynomial degrees of ξ1, . . . , ξn, f1, . . . , fm. Since π is of
polynomial degree one it follows that for each nonnegative integer r in formula (6.1) there
are 2r + Nder partial derivatives distributed over a total polynomial degree of r + d1 + · · · +
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dn+m. Clearly, for each r which is greater or equal to d1 + · · · + dn+m − Nder + 1 the term in
the sum vanishes which shows the convergence.

3. In the paper [2] we have shown that the deformed multiplication μ = μ0 + μ∗ con-
verges for h = 1 (which also follows from a similar power counting argument for equa-
tion (5.7) as in 2.), and that this convergent multiplication is isomorphic to the multiplication
in the universal enveloping algebra Ug. The rest of the statement is just a reformulation of
the formulas in Lemma 4.2. �

6.2 Formality in Stages

The preceding Theorem 6.1 allows us to prove formality for Universal enveloping algebras
once the Chevalley–Eilenberg cohomology admits an L∞-morphism into the Chevalley–
Eilenberg complex:

Theorem 6.2 Let (g, [ , ]) be a finite-dimensional Lie-algebra. Assume that there is an
L∞-morphism Φ ′′ of the Chevalley–Eilenberg cohomology a′ := HCE(g,Sg) equipped with
the induced Schouten bracket [ , ]′s into the Chevalley–Eilenberg complex a := CCE(g,Sg)

such that Φ ′′
1 : a′ → a is injective into the space of cocycles (a HKR map in this situation).

Then the universal enveloping algebra Ug of g is formal.

Proof By assumption, Φ ′′ is a morphism of graded cocommutative differential coalge-
bras (S(a′[2]), d ′) into (S(a[2]), d + δCE) where d ′ is the graded coderivation of degree
1 induced by the induced Schouten bracket. It is clear that the composition Φ ′ ◦ Φ ′′ :
(S(a′[2]), d ′) → (S(A′[2]),b + D) is an L∞-morphism. Since the latter is built over the
Hochschild complex of Ug and the Chevalley–Eilenberg cohomology is isomorphic to the
Hochschild cohomology by the Cartan–Eilenberg Theorem 2.1. The Theorem follows. �

6.3 Examples

6.3.1 Abelian Lie Algebras

In case the Lie algebra g is Abelian, then there is nothing to prove since the Chevalley–
Eilenberg differential is zero, and formality of Ug = Sg is the content of the Kontsevich
formality theorem.

6.3.2 Lie Algebra of the Affine Group of K
m

Theorem 6.3 Let g be the affine Lie algebra i.e. the semidirect sum

gl(m,K) ⊕ K
m.

Then Ug is formal.

Proof Thanks to Proposition 3.2 the Chevalley–Eilenberg cohomology of the affine Lie al-
gebra is given by the scalar cohomology of the matrix Lie algebra gl(m,K). This means that
the classes can be represented by cocycles in the Chevalley–Eilenberg complex which are
in Λg∗, that is by constant polyvector fields annihilated by δCE . Since all constant polyvec-
tor fields have zero Schouten brackets with themselves, it follows that the induced Schouten
bracket on the cohomology space is zero, and that any HKR-map Φ ′′

1 of the cohomology in
the subalgebra of constant polyvector fields is a morphism of graded Lie algebras. There-
fore the coalgebra map Φ ′′ induced by Φ ′′

1 is the desired L∞-morphism of the assumption
of Theorem 6.2. This proves the formality of Ug. �
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6.4 Construction of Nonrigid Universal Enveloping Algebras

In order to generalize the two criteria for (3.1) and (3.2) for nonrigidity of Universal En-
veloping algebras, we can use the preceding formality results:

Since an L∞-morphism maps so-called Maurer–Cartan elements, i.e. elements π∗ of
ta2[[t]] such that (d + δCE)(e•π∗) = 0 or

δCEπ∗ + 1

2
[π∗,π∗]s = 0, (6.2)

to Maurer–Cartan elements ν∗ ∈ A2[[t]], i.e. Φ(e•π∗) = e•ν∗ , it follows that a formal defor-
mation π = π0 + π∗ of the linear Poisson structure π0 gives rise to a formal deformation
ν0 + ν∗ of the multiplication ν0 of the universal enveloping algebra Ug. This implies the
major part of the following nonrigidity theorem proved in [2]:

Theorem 6.4 ([2]) Let π ∈ Sg ⊗ Λ2g∗[[t]] be a formal polynomial Poisson deformation of
the linear Poisson structure on g∗ such that the first order term π1 is a nontrivial Chevalley–
Eilenberg 2-cocycle of g. Then there exists a nontrivial formal associative deformation
of Ug, hence g is not strongly rigid.

7 Examples of Deformations of Linear Poisson Structures

In this section, we construct quadratic deformations of linear Poisson structure associated to
some solvable Lie algebras and discuss the strong rigidity of the corresponding Lie algebras.

Let K be the complex field. Let g be a finite dimensional decomposable solvable Lie
algebra, i.e. g = t ⊕ n where n is the nilradical and t is an exterior torus of derivations in
Malcev’s sense; that is t is an Abelian subalgebra of g such that adx is semisimple for all
x ∈ t. This class of solvable Lie algebra contains the non semisimple rigid Lie algebras [6].
The classification of n-dimensional rigid Lie algebras is known up to n ≤ 8 [24].

Dimension 2. There is one isomorphism class, namely the Lie algebra r2 which is strongly
rigid (see Proposition 3.1). It follows that the linear Poisson structure associated to Lie
algebra r2 is rigid.

Dimension 3. There are no solvable rigid Lie algebras.
Dimension 4. There is only one rigid Lie algebras, r2 + r2. Since the torus is 2-

dimensional, then according to corollary (3.1) this algebra is not strongly rigid.
Dimension 5. There is only one rigid class with 2-dimensional torus. There is no strongly

rigid Lie algebra.
In the following we construct nontrivial deformations of the linear Poisson structure as-

sociated to the solvable Lie algebra g1
5 defined, with respect to a basis {x, x0, y1, y2, y3}, by

the following nontrivial skewsymmetric brackets:

[x, yi] = iyi, i = 1,2,3,

[x0, yi] = yi, i = 2,3,

[x1, y2] = y3.

The 2-dimensional torus being generated by x, x0. We consider the vectors xi as a variables
and we denote by ∂

∂xi
the elements of the dual basis.
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Proposition 7.1 Let P ∈ Sg1
5 ⊗ ∧2(g1

5)
∗, P = P0 + tP1 where P0 is a linear Poisson struc-

ture associated to the Lie algebra g1
5 and P1 ∈ Sg1

5 ⊗ ∧2(g1
5)

∗ is defined by (α,β, γ ∈ C
∗):

P1 = αβ

γ
x0x3

∂

∂x
∧ ∂

∂x2
− βx0x1

∂

∂x
∧ ∂

∂x0
+ αx0x3

∂

∂x1
∧ ∂

∂x2

+ γ x0x1
∂

∂x0
∧ ∂

∂x1
− (γ x0x2 + βx0x3)

∂

∂x0
∧ ∂

∂x2
. (7.1)

Then [P,P ]s = 0 = [P0,P1]s and the cohomology class of P1 is not 0.
Therefore, P is a nontrivial deformation of P0 and g1

5 is not strongly rigid.

Proof By a direct calculation, we show [P,P ]s = 0 = [P0,P ]s .
Let S2g

1
5 be the space of quadratic polynomials with variables x, x0, x1, x2, x3.

The 2-cochains quadratic space is S2g1
5 ⊗ ∧2(g1

5)
∗ and the quadratic 1-cochains space is

S2g1
5 ⊗ (g1

5)
∗. We show that there is no element A of S2g1

5 ⊗ (g1
5)

∗ such that δCEA = P1. By
Theorem 6.4 we deduce that the Lie algebra is not strongly rigid. �

Dimension 6. There are 3 isomorphism classes of 6-dimensional rigid solvable Lie alge-
bras. Only one has a one-dimensional torus. Let us consider this Lie algebra, it is denoted
in [24] by t1 ⊕ n5,6. Setting the basis {x0, x1, x2, x3, x4, x5} the Lie algebra is defined by the
following nontrivial skewsymmetric brackets

[x0, xi] = ixi, i = 1, . . . ,5, (7.2)

[x1, xi] = xi+1, i = 2,3,4, (7.3)

[x2, x3] = x5. (7.4)

In the following we construct nontrivial deformations of the linear Poisson structure as-
sociated to the Lie algebra g = t1 ⊕ n5,6.

Proposition 7.2 Let P ∈ Sg ⊗ ∧2g∗, P = P0 + tP1 where P0 is a linear Poisson structure
associated to the Lie algebra g and P1 ∈ Sg ⊗ ∧2g∗ defined by (α,β, γ ∈ C

3 \ {(0,0,0)}):

P1 = βx2
2

∂

∂x1
∧ ∂

∂x3
+ γ

(
−x2x3

∂

∂x1
∧ ∂

∂x4
+ x2x5

∂

∂x3
∧ ∂

∂x4

)
+ αx1x5

∂

∂x2
∧ ∂

∂x4
.

Then [P,P ]s = 0 = [P0,P1]s and the cohomology class of P1 is not 0.
Thus, P is a nontrivial deformation of P0 and g is not strongly rigid.

Proof Straightforward computation and Theorem 6.4. �

Dimension 7. There are 8 isomorphism classes of 7-dimensional rigid solvable Lie alge-
bras. Only 3 have a one-dimensional torus. Let us consider one of these Lie algebra which
is denoted by g1

7 in [24].
Setting the basis {x0, x1, . . . , x6} the Lie algebra g1

7 is defined by the following nontrivial
skewsymmetric brackets

[x0, xi] = ixi, i = 1, . . . ,6,

[x1, xi] = xi+1, i = 2, . . . ,5,

[x2, xi] = xi+2, i = 2,4.
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In the following we give a nontrivial deformation of the linear Poisson structure associ-
ated to the Lie algebra g1

7.

Proposition 7.3 Let P ∈ Sg1
7 ⊗ ∧2(g1

7)
∗, P = P0 + tP1 where P0 is a linear Poisson struc-

ture associated to the Lie algebra g71 and P1 ∈ Sg1
7 ⊗ ∧2(g1

7)
∗ defined by (α �= 0):

P1 = 2αx4x5
∂

∂x0
∧ ∂

∂x1
+ αx2

5

∂

∂x0
∧ ∂

∂x2
.

Then [P,P ]s = 0 = [P0,P1]s and the cohomology class of P1 is not 0.
Therefore, P is a non trivial deformation of P0.
Thus, P is a nontrivial deformation of P0 and g1

7 is not strongly rigid.

Proof Straightforward computation and Theorem 6.4. �

7.1 Classification of Strongly Rigid Lie Algebras of Small Dimension

One may deduce from the previous section the following classification of strongly n-
dimensional solvable strongly rigid Lie algebra for n ≤ 6.

Proposition 7.4 There is only one n-dimensional solvable strongly rigid Lie algebra for
n ≤ 6, namely the 2-dimensional Lie algebra r2.

Then we have the following list, obtained in [2], of strongly rigid complex Lie algebras
up to dimension 6 as follows: it suffices to look at rigid Lie algebras (see e.g. [24] for some
list), and we ruled out two 6-dimensional Lie algebras by constructing quadratic nontrivial
deformations of their linear Poisson structures and applying Theorem 6.4. We get:

{0}; C; aff(1,C); sl(2,C); gl(2,C); aff(1,C) ⊕ sl(2,C);
sl(2,C) ⊕ sl(2,C); aff(2,C).

One may have also the following consequence: given a Poisson structure, if there exists
a formal isomorphism such that this Poisson structure is isomorphic to its linear part then
one says that this Poisson structure is linearizable. This problem was formulated first by
A. Weinstein (based on considerations by Sophus Lie) [13, 34]. Using the Theorem 6.4, one
may deduce:

Proposition 7.5 Every Poisson structure which is a deformation of linear Poisson structure
of n-dimensional strong rigid solvable Lie algebra is linearizable.

It follows that every Poisson structure which is a deformation of linear Poisson structure
of n-dimensional solvable Lie algebra, with 3 ≤ n ≤ 6, is linearizable. The Poisson structure
P0 + P1 (defined in Proposition 7.2) is not linearizable.
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